
Project Summary: The MetaScience Extreme Modeling Vision

Keywords: Optimization, Modeling, Supercomputing, Evolution, Diversification, AutoDifferentiation

CRI Concept: Transformative build-out of a unified mathematical optimization modeling paradigm infrastructure, MetaCalculus,
into a diversified science & engineering infrastructure, MetaScience.

MetaCalculus is the current version of a proven extreme modeling paradigm and solution platform able to produce new R&D
applications in sufficiently short times to meet narrow windows of opportunity that often arise in research and product
development. This proposal is to transfer MetaCalculus from serial computers to an HPC supercomputer and provide the plan for
a pilot university-community build-out of higher diversified modeling techniques built upon this platform.

Our intent is to apply the resources of the Center for Computation Sciences (CCS) at the University of Kentucky (UK) as the
CI:ADDO outreach center and laboratory to produce interfaces for interactive optimization supercomputing, renewing a practice
of MetaCalculus on early supercomputers on which it was marketed through the 1970s, but now extended to the full power of
modern multi-core parallelism. The laboratory resources of CCS, and the UK supercomputer and staff, were chosen for this pilot
project primarily due to the special relationship between Professor J. M. McDonough at UK and the team who developed the
technology, headed by the PI, J. M. Thames.

This CI-P planning project will first transfer an ensemble of proprietary and open-source software technology to UK/CCS by
installing it on the UK supercomputer and making parts of it available on other computers for access by CCS staff, faculty, and
students. Then training courses and webinars will be conducted by McDonough, Thames, and other team members, beginning in
the spring of 2012, thus providing the initial educational component to this project. This will be followed by recruiting participants
from UK, and other universities, to participate in the proposed CI:ADDO follow-on project and its proposal preparation, beginning
in late-summer of 2012.

Intellectual Merit—This project will continue development of higher-order “extreme modeling” approaches that can achieve rapid
prototyping of new concepts and products in the short time frames that students and faculty have to accomplish significant
research and that industry has to demonstrate viability of new concepts for commercialization. This involves the automation and
evolution of software from the complexity of the base parallel hardware toward higher levels of abstract conceptualization by
humans. Unlike other high-level programming languages, MetaCalculus employs an advanced form of automatic differentiation
(AD)—including (automatic) chain-rule propagation to any level—as well as a suite of numerical analytic techniques (similar to
those in MatLab) within its syntax. This provides the means to use available software technology and university resources to
advance the art of modeling and programming to create scientific demand to match the device/hardware output of our
semiconductor industry, potentially bringing ease of use of supercomputing to all engineers and scientists. It is expected that
solution of advanced multi-disciplinary optimization problems made possible by MetaCalculus will be widely reported at
conferences and in the archival literature.

Broader Impact—This implementation and further development of MetaCalculus on UK's supercomputer cluster, available to the
U.S. scientific community and industry through our proposed broad university system (expected to include some universities in
the HBCU catagory), can energize and broaden the phenomenal growth of the open-source software community toward cost-
effective one-of-a-kind R&D innovations when these are appropriate, as opposed to little more than recycling staple software like
Unix, for example. In particular, wide availability of MetaCalculus will produce initiation of software recycling of a different kind,
namely, converting legacy simulation software into optimization software via the “extended” Fortran embodied in MetaCalculus.
This is an increasingly important capability in industry and academia as the need to find optimal solutions increases.

This will allow engineers and scientists to apply the sophisticated optimization tools of MetaCalculus to recycle models and
create new sophisticated models now needed in the context of very complex multi-disciplinary problems. Moreover, because
code generation is relatively simple, and a wide range of numerical methods is encapsulated within MetaCalculus, the
engineer/scientist can master the language very quickly and can then address (code) very sophisticated problems without the
need to debug numerical algorithms. Clearly, this will result in significantly increased productivity of engineers and scientists in
all disciplines by removing the “division of labor” (between engineer and computer scientist/mathematician) that existed in the
past when the various still widely-used legacy codes were developed.



Project Description

Computing Research Infrastructure Concept

MetaCalculus is a paradigm and infrastructure which adds templates for three tiers of holistic
modeling: simulation, correlation, and optimization to conventional algebraic programming languages.
Together these three tiers comprise a modeling alphabet featuring combination by hidden algorithm
nesting, like subroutines; thus the use of the word “tier”. The following diagrams illustrate the progression
of abstraction of the same application from ordinary Fortran on the left, to Fortran Calculus on the right.
Figures 2 and 3 represent a 3

rd
generation and a 7

th
generation in the evolution of this paradigm as it

exists today, respectively.

Figure 1.Fortran IV Version Figure 2. SLANG Version Figure 3.Fortran Calculus Version

Figure 4 shows the same application in the 6
th

generation language, TSPROSE, This image is the
copy of a figure from the R/D Magazine article Computing in Calculus [5], which shows its code (with
editor line numbers) imbedded in a hierarchy diagram to illustrate the sub-problem nesting. This was a
commercial product marketed in the time-sharing era, and featured interactive optimization. Today, this
paradigm offers the potential to transition the computer-science collaboration known as “extreme
programming” into a peer-science collaboration of “extreme modeling”. It is the result of a unique
semantic architecture, which implements nested algorithmic differentiation (NAD) [16][19][20].

Infrastructure Enhancement – Our concept proposes to start with this existing unified-mathematical
infrastructure and enhance it to build-out a diversified collection of science & engineering modeling
infrastructures, which will be known by the generic umbrella name “MetaScience”. More precisely, we
plan to add the rapid-automation (RA) scaffolding to the MetaCalculus infrastructure so that it naturally
evolves and proliferates in end-user contexts, such as engineering schools, throughout the country.

This RA scaffolding consists of well-known software automation techniques, such as syntax macro
processors, compiler-compilers, GUI builders, and special website generators that we have tailored and
integrated into an “ensemble of evolution escalators” to organize and automate “do-it-yourself” production
of new modeling and solution media. It is believed that the cost to deploy, operate, and support the
evolutionary use of this complete ensemble (including MetaCalculus) on a suitable supercomputer is less
than ten man-years per year. This is based on the history of development of the ensemble and the high
degree of automation involved.



Page 2 of 15

Figure 4 TSPROSE Version (6
th

Generation)

Catalysis of Extreme Modeling – Experience has shown that this infrastructure concept has a
natural propensity for catalyzing sociological reformation from its pattern of usage. Implications are that it
will reform the division of labor, such that computer science and application science will progressively
settle into an organic peer relationship, producing high productivity leverage from “agile” methods
overcoming the inefficiencies of the traditional Waterfall development method. The reformation
mechanism is optimization re-engineering of legacy simulation code in MetaCalculus languages,
following a software recycling trend similar to the “componentization” trend of object-oriented
programming (OOP), which largely enabled the growth of the open-source software movement.

This optimization re-engineering can fuel the build-out of MetaScience media, extending the canned
mathematics of MetaCalculus media into vertical market (domain-specific) MetaScience media containing
canned science and engineering. Another compelling reason for this is the fact that parallelized
supercomputing is much easier to achieve in domain-specific design than in general-purpose design.

MetaCalculus Overview

This section provides more detail in the use of the 3-tiered MC modeling alphabet. Figure 5 illustrates
the essential syntax of another application utilizing this same design pattern of a two-point boundary
value problem of differential equations nested within a (constrained) optimization problem, solving for ten
unknowns and satisfying two constraints. The differential equation is the second-order cantilevered-beam
equation, used to represent an aircraft wing.

Figure 6 shows more detail of this application to illustrate its semantic processing. The blue arrows
indicate the “calculus” calls of the language, which trigger iterative processes of differential search and
integration. The first arrow on the left starts the constrained optimization search to find the two vectors



Page 3 of 15

(eis and alpha) using the Thor solver, a sectionally-linearized LP algorithm. The dimension of these
vectors is the number of wing sections in the cantilevered wing. The eis vector represents the flexural
rigidity of each wing section. The alpha vector represents the length of each section.

Figure 5. Wing Design Optimization in TSPROSE (6
th

Generation)

The under phase of Thor’s find statement invokes a controller .tcon (not shown). This is a portal into
the Thor solver to set Thor’s control parameters to values different from their default values (if required).
The two phrases with bounds and with lowers define vectors corresponding to the unknown vectors eis
and alpha that represent step bounds on the changes in these vectors during each search iteration, and
lower limits on the unknowns (constant constraints). The holding phrase defines the variable inequality
constraint weight, which must be held greater than or equal to zero. The matching phrase defines a
variable equality constraint altotl, which must be matched to zero within a specified tolerance (a solver
control parameter).

This find statement calls the solver Thor, which then iteratively calls the model .flex, invoking
algorithmic differentiation (AD) with respect to the eis and alpha vectors each time. Since the first
statement of .flex is another find statement, it calls the find’s solver, Ajax (A first-order Newton method).
Ajax then detects that AD is active, and saves any partial derivatives that may have been accumulated.
Then it restarts AD with respect to its unknown vector (the scalar dy0 in this case), and calls its model
.beamivp. This model’s sub-problem is an initial-value problem to integrate the second-order cantilevered
beam differential equation, whose rate variable is d2ydx2.

The first line of the .beamivp model sets the initial conditions of the initial-value problem. The initial
rate variable dydx is set to the dy0 variable which is the unknown of the find statement in the model .flex.
The next statement, initiate, defines the differential equations in the integrand model .beamode to be
integrated, and initializes the numerical-integration solver Athena (a variable-order, variable step-size
Runge-Kutta method). This statement resolves the second-order differential equation into two first-order
equations by defining each equation’s rate variable on the left of a slash (integrator input), and its



Page 4 of 15

corresponding state variable on its right (integrator output). It identifies the integration variable (x) in the
of phrase, the suggested integration step size (h) in the step phrase, and the upper limit of the integration
interval (xf) in the to phrase. Next a for loop is used to cycle over piecewise integration of the .beamode
model via the integrate statement, increasing the limit variable xf by the interval h, each time. The reason
for this piecewise integration is to collect the integrated variables in the vectors yb and xb for printing
purposes. The integrate statement actually calls the integrand model .beamode multiple times for each
integration step according to the needs of the solver Athena to meet a precision tolerance.

Figure 6. A profile view of the wing optimization problem

After the repeat statement, ending the for loop, the boundary value constraint variable g1 is
computed as the difference between the output rate, dydx, and the specified boundary condition, dydx1. It
is the zero value of this constraint that is searched for by the find statement (and its solver Ajax) in the
.flex model, to solve for the initial condition dy0. Ajax is a Newton method which requires the derivative of
g1 with respect to dy0 in its search process. While the determination of this derivative would be
impossible via a symbolic differentiation method, it is readily determined by algorithmic differentiation of
all the arithmetic occurring in and downstream of the .beamivp model, including the quadrature integral in
the differential equation formula (the last statement in the .beamode model) and the integration solver
Athena.

The Ajax solver invoked in the .flex model find statement executes the .beamivp model iteratively
until the g1 constraint converges to zero. But before returning, Ajax calls a differential coordinate system
transformation subroutine, which transforms all of the derivatives with respect to dy0 computed in and
downstream of the .beamivp model into partial derivatives with respect to the eis and alpha vectors (the
NAD process). Then the algorithmic differentiation continues with respect to eis and alpha for the
subsequent computations of the winglift objective function and the two constraints weight and altotl,
constituting the principal variables processed by the Thor solver in the optimization iterations.



Page 5 of 15

Transcending Algorithmic Programming – The NAD semantics architecture represents automated
intelligence which obviates the need for much of the procedural skill of algorithmic programming, in the
same way that Fortran obviated the need for even understanding the processes of machine arithmetic. It
is automated far beyond the need to understand algorithmic logic in application programming. Modelers
using MC are hardly aware that by merely configuring the templates inside models, they are automatically
synthesizing such powerful composite solvers under the hood, “glued” together dynamically by the
differential geometry sensitivity information provided by the NAD semantics.

The cascade of modeled sub-problems is comprehended intuitively, because it mirrors the expected
science behavior understood at a higher conceptual level. The implication of this distinction between MC
modeling and conventional algorithmic programming is that in the future, scientific software will only be
understandable by those who model the science, because the ad-hoc nested semantics will be too
convoluted for logical comprehension. This will broaden the participation of scientists and engineers,
enabling them to computerize new applications that are simply not feasible today because of the burden
of numerical analysis and the delay of using languages unsuited to higher mathematics.

From the modeling perspective, it is not essential to know all of this calculus semantics in order to
solve problems at this higher level. It is like the mechanics of an engine that the automobile driver is not
required to understand. For this reason, we believe that modeling and solving pedagogy can eventually
be pushed downward using technologies like serious games, from the level of this subject, the calculus of
variations, to introductory pre-algebra in middle school. A great deal of the intervening mental gymnastics
of symbolic reasoning in math pedagogy is simply not required to quantitatively understand science.

Higher Modeling & Program Generation Media

Mathematical Application Template Systems (MATS) - The potential for higher orders of modeling
automation was demonstrated using PROSE as an algorithm evolution platform in 1975 by McDonough,
currently University of Kentucky professor of Mechanical Engineering and Mathematics. Then a staff
mathematician at PROSE, Inc., McDonough developed several PROSE test programs for validation and
comparison of AD with symbolic and finite difference (approximate) differentiation. He also redeveloped
the GRG algorithm [55] in PROSE, for later “subordinization” into the PROSE library as a solver engine.

EPOC – The most important example was his development of a mathematical application template
system for dynamic programming modeling, called EPOC (economic planning via optimal control). This
established an important new class of modeling tools—the “model-input” MATS class. Actually, this had
not been the first model-input MATS. It was preceded by the Apollo Propulsion Analysis Program (APAP)
[19,20,44-47], which added the MC1 translator to Alford’s correlation engine[19] developed at TRW.

But EPOC was the first MATS developed in a very-high-level language, using the templates of
PROSE to reach a “very-very-high-level” of modeling. It involved implementation of Pontryagin’s Discrete
Maximum Principle algorithm in EPOC, which did not fall prey to the “curse of dimensionality” of Bellman’s
dynamic programming algorithm. This MATS algorithm used PROSE’s built-in Thor optimizer for stage-
wise optimization. In test programs, McDonough ran nonlinear optimal control applications having 10,000
decision variables on a memory-limited CDC 6600 in 1975. EPOC was applied to a Timberland
Investment Management Model (TIMM) for Simpson Timber Co. (Seattle) and the Western Timber
Association (San Francisco) to compute the harvesting and regeneration policy for Western forests.
(McDonough and Park [34,35]),

Platform for Higher Modeling Architectures – MATS program generators are middleware
architectures for higher modeling. A major boost in the state of the art provided by FORTRAN II in 1958,
was that it became a platform upon which to evolve more abstract modeling languages and template-
architecture program generators, which triggered their growth in the 2

nd
computer generation era.

Similarly, MetaFor, the planned Fortran 95-compatible successor to Fortran Calculus, can renew that
vertical-evolution growth. It provides the modeling middleware for implementation and production of
model-input-MATS program generators, which only contain canned mathematics, and canned-model-



Page 6 of 15

MATS program generators, which are built upon canned engineering modeling-component libraries as
well as canned math libraries. Examples of each type are briefly reviewed below.

Model-Input MATS Example – Forrester’s System Dynamics motif, as currently implemented in
STELLA [38], VenSim [39], and PowerSim [40], is
representative of the Model-Input MATS class. We have
postulated a GUI design that would combine
MetaCalculus superstucture modeling with System
Dynamics substructure modeling.

Figure 7 illustrates how this type of GUI would
operate. Associated with the model of an MC System
Dynamics Simulation (SDS) holon. It would enable the
model to be inserted into MC design patterns like the
ODC pattern of Figures 4, 5, and 6, using the SD motif
GUI, and automatically translated into MC semantics for
solution. This is illustrated in Figure 7 via the inset
showing the flow and stock symbols characteristic of
System Dynamics modeling motif. This extended MC
interface would allow the wealth of SD modeling,
produced over the last 50 years, to be nested within
MetaCalculus hierarchies to address inverse problems of
design optimization and scientific method correlation of
models containing differential equations, masked by
Forrester’s pedagogy of stocks and flows.

Canned-Model MATS Example – NASA’s Shuttle interactiv
software, the Flight Design System (FDS-2) [42], which contain
of Shuttle engineering model components in its canned simula
representative of the Canned-Model MATS class that could be
optimization via MetaCalculus platforms. It was designed in the
engineering Apollo batch-mainframe mission planning software
CAD system featuring game-like mission visualization usin
graphics terminals. Figure 8 shows snapshots of such images
was specifically “lowered” by this canned engineering approa
degreed technicians having no engineering modeling skills, an
dedicated mini-computers. It was used to design all the Shuttle
by 8A minority set-aside contractors operating in this low s
mode. The FDS, and other NASA software evolved from
operational planning of the International Space Station. They
engineering build-out of legacy software into higher media for m

Peer Catalytic Theory of Optimization Re-Enginee

The most important leverage provided by Fortran Calcul
engineering legacy code for simplified optimization, such as all o
of FDS into automatically differentiable optimization componen
design optimization applications.

The SLANG program in Figure 2, the TSPROSE progra
program in Figure 3 were all examples of re-engineering of a
application [18] (Figure 1), showing 5 to 1 leverage when com
Design Optimization problem of Figures 5 and 6, has the sa
problem, but solves for 10 simultaneous constrained unkno
program could just as easily have posed a 100-section wing.

SOS

SCS

SDS

SD GUI Insert
(STELLA/VENSIM)
e mission-planning
ed a compendium
tion processors is
further elevated to
late 1970s, by re-
into an interactive

g Tektronix 4014
. The FDS design
ch for use by non-
d was deployed on
missions, primarily

kill “serious game”
it, were used for
exemplify the re-

ission modeling.

ring

us and MetaFor is th
f the models embedd
ts, which can be re-s

m in Figure 4, and th
Fortran optimal design
bining all of the MC t
me design pattern a

wns for a five sectio

Figure 7. MC[SD] GUI Architecture
e capability for re-
ed in the old Fortran
ynthesized into new

e Fortran Calculus
and control (ODC)

emplates. The Wing
s the simpler ODC
n wing. The same

Figure 8. FDS Images



Page 7 of 15

In 1975 an engineer at a California manufacturing firm was using BASIC to simulate an AC motor
design, when introduced to TSPROSE by a sales-support mentor from its vendor. In a few hours they had
converted the BASIC to an optimization program to solve for 12-design parameters, subject to 8
constraints, which produced a 30 percent gain in motor efficiency. The elapsed time spent was a minute
fraction of the time the engineer had already spent trying to solve for the parameters by trial and error
simulation. The mentor who assisted him did not have any understanding of the engineer’s electric-motor
equations, but didn’t need to. The mentor’s role was to apply the MC solvers to any equation model. It
was the engineer’s job to understand the model.

This episode became the inspiration for a theory of catalytic learning pedagogy that we believe can
transform the undergraduate and graduate educational research agenda, and catalyze “extreme
modeling” to enhance discovery and understanding, the way OOP did in computer science during the last
two decades.

Understanding the science and engineering embedded in these old models (e.g. how to convert such
science and engineering into equations in the first place) is not necessary in the re-engineering. It can be
done by computer-science students, who would ordinarily not be exposed to such science. Yet such code
porting can be a catalyst for automated learning of a vital complementary skill. The major benefit to the
computer science students will be learning how to apply the solution-engines of MetaCalculus to arbitrary
equation systems whose imbedded science they do not have to understand. Yet they can recognize
recurring design patterns, which can be abstracted into new MATS templates. With this skill they can
become optimum collaborators, and part-time mentors, to scientists and engineers of all disciplines who
do the actual modeling (converting science to equations) and thereby diffuse the burden of science
diversity which the computer scientists no longer have to cope with. Yet with MATS opportunity
discoveries, they can advance the modeling art vertically with new development.

The MetaScience Mandate – Thus we have a prescription for a “MetaScience Re-Engineering and
Renaissance” build-out agenda. Computer Science students and professionals, currently overwhelmed by
the diversity of science and engineering when they have to produce the code, can learn a complementary
role synergistic with but without the burden of all that diversity, by simply re-engineering old simulation
code for optimization; thereby becoming “optimization mechanics” able to collaborate in extreme
modeling with all of the diverse science and engineering “drivers” who do the modeling by converting
science to equations. In effect, the computer-scientists can become solution engineers who are modeling
catalysts, but not involved in science itself, and yet become the developers of new modeling tools.

We believe that with a national agenda, encouraged by a grant program, and led by university
engineering departments as an outgrowth of the supercomputer provisioning planned by this project, this
transition to a peer division of labor could be accomplished (reach critical mass of growth) in less than five
years. Such a national agenda would encourage contribution by industry and government sources of old
simulation software source code to be used as “archeology strata” by students to extract the modeling
code from and perform optimization-re-engineering of it. This kind of term project and thesis research
would “osmotically” train students to become mentors in the kind of peer collaboration that occurred
originally between the TSPROSE mentor and the AC motor design engineer.

Moreover, the recycled simulation modeling, now purified of the algorithmic solution code of the
“coded calculus” era before the advent of algorithmic differentiation, can be collected and re-configured
by OOP methodology into modeling alphabets. The synergy of application science and computer science
would thereby leverage with complementary differences to computerize new models with extreme speed
and find solutions with extreme computational performance. Computer science can then become “solution
science” in the truest sense. This will be the broad objective of the provisioned university research
enhancements of the CI:ADDO project that we will plan for in this project

Spiritext—the MetaScience Pedagogical Medium

The web has made possible a new kind of dynamic software documentation that is integrated “in situ”



Page 8 of 15

with source code [31]. Here we provide a brief discussion of its context-sensitive invocation of pop-up
manual windows, and its wiki-side use for collaborative notes. For semantic-intensive MetaCalculus
languages, which invoke large solver engines from libraries, the bulk of the Spiritext can be generated by
the parser (part of the compiler), and includes the entire content of all of the user guides and reference
manuals that would ever be needed.

Figure 9. Screenshots showing link-click in “THOR” tooltip invoking popup description

Figure 10: Adding permanent footnotes and temporary collaborative notes

Such Spiritext generation illustrated in Figure 9 shows two Spiritext screenshots generated from the
AC electric motor optimization program discussed above, here written in Fortran Calculus. The upper left
frame is a logo with navigation buttons. The upper right frame contains the synopsis of the source code
listing in the lower right frame. Its content is taken from an external file referenced in a comment field on
the first line of the source-code patch, but deleted from its presentation in the lower right frame. Although
the screen capture program used to capture these images does not show the actual mouse pointer, its
location (over “THOR”) is what causes the Spiritext effects seen in the images. A Control click on a link in
the tooltip invokes the user-manual popup on the right.



Page 9 of 15

Using wiki methods, augmented by the user via the web-browser, it can deploy many learning
concepts discussed in the early 1990s by leading learning theorists [22]. In particular, it automatically
provides an Extensible Web of Explanation where “people demonstrate their understanding by revising
and extending their explanations” [25]. It utilizes multiple-linked representations [29] to automatically
integrate a “Meta-Level” of Instruction [30] in which the pedagogical content itself is the “mini-manual”
used to context-sensitively index the “maxi-manual”, constituting all relevant web-accessible
documentation, including, in the case of MC programs, a collection of different application examples
having similar design patterns, such as Figures 1-6. Another class of permanent tooltip footnotes and
temporary “collaborative notes” are added by the user (reader) of the Spiritext web-pages, using dialog
boxes, as shown in Figure 10. The collaborative note on the right sends an email message with a return
link to the position of its footnote in the code, inviting the email recipient to view the note and comment
through the same medium. These notes have temporary time-limits set in the dialog box. We believe this
sub-hypertext will come into its own in the use of tablet computers as MetaScience cloud portals.

Rapid Automation (RA) Scaffolding

The goal of this initiative is to re-institute an end-user movement toward automation of extreme
modeling via a strategy like that of the original development of MetaCalculus at TRW—the CUE
(Computer Utility for Engineers) Project [50] which evolved the five generations establishing the
MetaCalculus paradigm of PROSE in five years during the Apollo program. RA evolution of modeling
languages using tools like the ML/I syntax macro processor [51] was the legacy arising out of 2

nd

generation computing, subsequently lost in the staple software recycling trend that prevailed with the IBM
360. Staple (mass application) functionality, subsequently infused with graphic arts, morphed into an
interface-style programming agenda with the advent of GUIs, and then client-server web interfaces.

In all of this style focus, much commercial PC software development by the year 2000 had settled into
the recycled functionality of circa-1980 mainframe software, albeit dressed up in ever-changing styles,
and becoming ever more labor intensive in development. Two human generations had gone by since the
end-user modeling quest of the 1960s, which had produced MetaCalculus—dedicated toward one-of-a-
kind computerization in time to meet the narrow opportunity windows (NOW) of R&D. Today initiatives
toward “agile programming” are taking over software engineering to try to overcome the inefficiencies of
the Waterfall specification-driven process. But as a recent Dr. Dobb’s linked article [56] warned, these
initiatives will not scale without automation.

End-user software engineering is getting much attention these days with recent publications, notably
[57]. But coming largely from computer-science research, rather than end-user application-science
origins, they hover around interface technology, most notably spreadsheets, and have not reached down
into middleware yet. Consequently they do not focus on critical core automation technologies, like syntax
macro processors, compiler-compilers and GUI builders that are needed to build-out end-user media.

Having long ago achieved the kind of empowerment for those end-users having the most dire needs
(STEM professionals in education and R&D), which are barely mentioned in [57], we propose to establish
a movement that renews the Apollo build-out of MetaCalculus (canned mathematics) media, toward the
automated modeling of MetaScience (canned science & engineering) media, automated by the leveraging
technologies mentioned, but restored to their original RA vertical-evolution purpose by special scaffolding
which renews their leverage, discussed below.

Metacybernetics – Technology for Leveraging Vertical Evolution – After the evolution of PROSE
and TSPROSE, we embarked upon the development of “blank slate” computer architecture at the
Aerospace Corporation [9], intended to become a platform for hardware-assisted MetaCalculus, following
the interpretive virtual-machine (“metacomputer”) mode of MC2-MC6. Metacybernetics [52] was a RA
technology of generating and evolving such languages and metacomputers from “highest-order
metaphoric” designs, which could potentially be evolved by end-user application developers, in the same
kind of context and short timeframes in which MetaCalculus had evolved.



Page 10 of 15

Later with the development of MC7 (Fortran Calculus) on Intel 386, Vax, and Cray computers, we
were able to avoid the slower metacomputer mode of MetaCalculus execution on such conventional
hardware by bifurcating the variables of the Fortran native-code runtime environment to achieve
differential-arithmetic execution performance on the order of Fortran itself. So the need for the blank-slate
hardware architecture was overtaken by high-performance semi-conductor technology.

But in considering the abstraction path to be taken in the vertical evolution from unified MetaCalculus
to diversified MetaScience, involving the upward build-out of metaphoric media (languages and GUI
composers), the Metacybernetic automation principles were needed again, because computer-science
provisioning had once again focused on the low-level design of optimizing hardware with their popular
metaphoric tools—compiler-compilers like Yacc [63], and GUI builders like Glade [64] which feeds the
Gtk+ API libraries [65]. Both had degenerated into metaphoric C-preprocessors, in which the metaphoric
end-user “top” part of the design (BNF grammar or widget pallet), in which changes were “mutations” of
the whole, took a back seat to the “bottom” part—implementation design in C or other languages, in which
changes were “surgical”. There was no way to back-reference surgical changes into mutational changes,
so the two design levels became disconnected. Vertical evolution consequently became frozen (highly
labor intensive to make metaphoric design changes).

GAEMY [53] and EverGlade [54]: Escalators for Rapid Media Evolution – To compensate for this
problem, we developed wrapper prototypes for Yacc (Bison [66]) and Glade, which automate the
synchronization of both design levels using Metacybernetic principles and modern tools such as the Meld
[67] editor and the Git [68] version control system for synchronizing multi-levels of source code design
and directory trees, even when different-levels of design are being compared. The degree of automation
is such that novice programmers can easily adapt and successfully evolve whole systems (synchronized
metaphoric design and implementation design) in languages they are not even familiar with. Two
generations of prototypes have been developed in each of these categories.

In the case of GAEMY, its wrapped base (Bison) is highly stable, so most of its improvements affect
the rapid prototyping of new languages by a new method of rapid-iterative-grammar assembly. But its
intended use is to translate higher language grammars into MetaCalculus grammars (very-very-high-
level source to very-high-level source—relatively simple translation, easy for students to master) to
produce “wrapper translators” as preprocessors to MC translators. So the rapid evolution of diversified
MetaScience modeling languages can be easily accommodated even in application science domains,
such as engineering departments.

The two EverGlade prototypes, EG2 and EG3 wrap Glade2 and Glade3, which have taken far
different paths. Glade2 has been used for producing well respected tools, such as the Geany IDE [58].
But Glade3 has eschewed the original approach of producing C or other language interface programming
images and stubs (for downstream surgical design), and produces only XML description of the
metaphoric GUI design, relying on advances of the Gtk2 API library to directly interpret XML GUI
descriptions at runtime, enabling the metaphoric design of totally dynamic GUIs. With the advanced
features of EverGlade, which produces GtkPerl GUI interpreters, this opens broad possibilities for
producing interactive GUIs, even on supercomputers.

Compelling New Research & Education Opportunities

Dynamic Correlation and Optimization Paradigm Extensions

Alford and McDonough earlier produced two higher algorithm classes which are logical extensions of
the MC paradigm, both of which employed earlier MC incarnations as “power-tool platforms”.

The first of these was GOP (General Optimization Program), an optimal control trajectory optimization
program designed to rapidly prototype detailed bipropellant (“engine-balance”) propulsion models
involving implicit differential equations. It was developed at TRW in 1963, and applied a
“quasilinearization” [18] algorithm (a 2

nd
order Newton method applied in function space). It was for this



Page 11 of 15

project that Alford developed the 2
nd

-order NAD semantics—automatic differentiation and differential
geometry coordinate transformations.

The second was MAFIA (Mack Alford’s Filtering Algorithm), which became the engine of the Apollo
Propulsion Analysis Program (APAP), which used MC1 as its model compiler. MC1 became the
progenitor of the subsequently evolving MC paradigm, but the full sophistication of the GOP or MAFIA
algorithms were never subsequently implemented in any of the MC platforms, as the opportunities to do
so never arose.

EPOC, discussed previously, was a third species of the same class.

As all three of these dynamic optimization algorithms have been implemented in MC context
previously, re-implementing them as a new dynamic engine class is straightforward and can be
accomplished quickly.

MOB Searching – Painless Multicore Parallel Optimization

Another straightforward extension is MC Optimization Broadcasting. The same model can be
simultaneously searched by many different optimization solvers from many different starting points, and
the results of all of these parallel jobs can be collected in a database, and with special RunViewer GUI
tools, non-convergent jobs can be quickly diagnosed, using the detailed reports that are automatically
generated by all the MC solvers. A key advantage is that this is a straightforward approach to global
optimization, and can be applied just as readily to nested inverse problems involving optimization of
differential-equation models as to simple parameter optimizations.

The same MOB searching can be simultaneously applied to the same model with many different
objective functions. So models can evolve very quickly and be thoroughly evaluated in just a few runs,
albeit covering very broad search footprints. Thus NOW timeframes can be satisfied with global
optimization even for very difficult optimization applications.

MOB Dynamic Correlation and Optimization – An obvious extension of MOB searching is the
broadcasting of dynamic correlation and optimization super-solvers to deal with global optimization and
pathological objective functions, as well as simultaneous application of different objective functions
(different identification and estimation functions in the case of correlation).

Swarm Hyper-surface Data Mining & Visualization – An extension of MOB searching is the
potential automation of data-collection of all of the MOB jobs to synthesize (interpolate) whole hyper-
surface domains, not just search paths. This will involve applying coordination intelligence between the
MOB solver instances, and spawning of interpolation searches to march along equality constraints to
produce contour curves. The intent is to rapidly characterize the hyper-surface in the database for
immersive and projective visualization graphics.

PDE Solver Algorithm Research

In many ways, our interest here is to continue what we started in the 2
nd

computer generation with the
development of SLANG and PROSE, as referenced in the survey paper by Nilsen & Karplus [59]. This
paper referenced SLANG and PROSE as simulation languages, because that is what the survey was
about. But the authors were careful to point out that our technology transcended the art of simulation,
providing the ability to optimize continuous systems through the generation of Jacobian matrices during
each iteration.

They went on to survey six simulation languages dedicated to the modeling and solution of partial
differential equations, SALEM, PDEL, LEANS, DSS, PDELAN, and FORSIM. Our desire is to build PDE
solvers in which mathematical reduction to ODEs is unnecessary in the code itself, but is rather
accomplished under the hood from direct declarations of the PDEs themselves, like in the languages
referenced above.



Page 12 of 15

Recently our team had occasion to review an interesting PDE correlation application developed by
Dr. Lee Zia in his PhD research [60]. It was a PDE parameter-estimation problem using a method we had
been researching as a potential new MetaFor PDE solver. McDonough [62] and Scofield [61] both wrote
papers on this topic, after reviewing Zia’s thesis.

Growing Engineering Education

We strongly believe that the NSF should institute a program of optimization componentization of re-
engineered simulation models by mining past engineering software code bases, such as NASA’s Shuttle
Flight Design System [42], using it to educate future scientists and engineers. Redirecting the object-
oriented motive of IT recycling of staple business functions, toward highly diversified “archeology” of
recent science and engineering is a way of killing many birds with one stone. It can motivate students to
pursue STEM careers (first or second) with historical examples that will enliven their studies with real
drama, such as what really caused the Challenger and Columbia accidents, or even Apollo 13. It will re-
train the strata of IT OOP professionals in supporting engineering modeling while these practitioners
create compendia (libraries) of modeling components in many diversified fields that can be used to
synthesize new system-optimization models, and automate the art of modeling. Each engineering
department should have one or more projects of this kind.

Identifying Community Consensus Needs

There are several important capability tradeoffs that need to be examined with regard to computing
research communities, especially in view of the precedents of industry software that have been shaped
by three decades of consumer-oriented commercial software, and software-engineering techniques of
developing and delivering staple (mass-application) software for others to use over life cycles; as
opposed to one-of-a-kind software developed by end-user science and engineering researchers, where
the end-item is not software, per se, but knowledge gained from research. Programs in this case are
simply temporary end-items that are in constant evolution as experimental apparatus.

“High gradient” evolution is especially important at the outset of R&D programming development,
when the problem to be solved (the “embryo model”) is only partially understood. What is called for is
rapid learning by prototyping and experimentation to arrive at a valid model and program design, like for
example: what design parameters should be solved for, what the most important objective function is,
what the constraints are, and how they should be formulated. Seldom can these questions be resolved
without experimentation, and it must be quick so as to be cheap in manpower cost.

Questions of functionality versus cosmetics take on totally different import in this context. While GUIs
may be very attractive for the staple software user, they are notoriously difficult to develop, whereas
command-line menus providing the very same functionality can be quickly produced and adapted by end-
users, without significantly diverting them from the primary research tasks.

The steps to be employed to assess community consensus needs are discussed in the project plan
below.

Project Plan of the CI-P Project

As the intent of this initiative is to broadly introduce and recruit a team from the university community
to participate in a MetaScience infrastructure build-out to begin in the Spring of 2013, following
submission of a CI:ADDO proposal in October 2012, the project plan of this CI-P proposal will be to
provision this introduction and recruiting. Because of our affiliation and long association with professor
McDonough at the University of Kentucky, and his close association with the Center for Computation
Sciences and the DLX Cluster supercomputer there, we propose this center and this supercomputer to be
the hub and pilot center for the CI:ADDO project. Should the status of this center and supercomputer
change during the interim, we would propose to adapt the planning accordingly to accommodate the new
circumstances.



Page 13 of 15

To familiarize the local UK community and other university communities with the MetaCalculus
technology and its scaffolding in order to broaden participation in the planning, we propose to install the
current MC7 infrastructure on the DLX supercomputer, or its surrogate, and begin training the community
in its capabilities. As this installation (or its equivalent—making the existing cloud installation available for
access) can be accomplished immediately upon funding the CI-P project, McDonough is preparing to
teach a 500-level course in MetaCalculus at the Current CCS media room in McVey Hall during the
Spring semester, 2012. Using the media production facilities there, this course will be recorded as a
webinar, to be used in community recruiting for the CI:ADDO proposal effort to begin in late Summer of
2012.

Initial Infrastructure Installation

The initial installation will include the currently available MC7 Fortran Calculus language, translator,
kernel and solver library plus the Spiritext scanner (whose usage is shown in Figures 9 and 10), manuals,
web-portal and test-bed scaffolding tools. The MC7 translator combines with the resident Fortran compiler
to implement programs written in Fortran Calculus, an extended modeling dialect of Fortran 77. The MC7
kernel bifurcates floating point variable cells to serve dual roles as real number values in non-
differentiation contexts, and either real-number constants of differentiation or integer pointers to partial-
derivative arrays in differentiation contexts. It performs nested algorithmic differentiation as invoked by the
templates of the language.

Contributed MC7 Vendor Nexus Product Installation

MetaCalculus, LLC, our for-profit affiliate will contribute its proprietary MC7 nexus product, install and
maintain it in closed-source binary form on the supercomputer. This nexus includes the Fortran Calculus
translator, and the runtime kernel and library (KERLIB). Installation will be performed and tested by
Joseph Thames, PI, and president of both the for-profit (Vendor) and non-profit companies.

The MC7 Library contains 18 operational optimization search engines and three in development. It
contains three correlation engines and two in development. It contains ten differential equations system
integrators, and seven quadrature solvers. It contains a graphics engine which interfaces the DISLIN
graphics library from the Max Planck Institute.

Contributed MSF Scaffolding Tools

In addition to the Vendor supplied nexus product, the MSF open-source scaffolding ensemble, to be
used for vertical evolution of modeling enhancements, will be installed, and training webinars produced to
train users in their application and evolution. The MSF ensemble includes:

 MIDUS – Menu Interfaced Development and Usage System – the primary executive used to
control all of the MSF ensemble; an integrated development environment (IDE) implemented as
command-line menus, which can be interfaced via Linux desktop terminal emulators or via SSH;

 Spiritext Scanner Generator - This is the Spiritext website generator for Fortran Calculus;

 EverGlades – Two RA GUI application escalators, wrappers for the Glade2 and Glade3 GUI
builders, designed for end-user GUI development icon and pallet-based modeling composers;

 GAEMY – Grammar Action Evolution Manager for Yacc, wraps the Bison (Yacc) parser
generator, enabling the rapid evolution of application languages and translators for extending
MetaCalculus languages to domain-specific MetaScience modeling languages;

All of these tools are maintained by the Git version-control system which operates as common
substructure, maintains infrastructure repositories, and is controlled by simple menus. Taken together
these tools are the RA means to produce highly diversified MetaScience modeling technologies built upon
MetaCalculus languages in the future CI:ADDO build-out. Their installation as part of the CI-P project will
be for training the initial community personnel, including students, faculty, and staff, and identifying build-
out subprojects to be proposed in the CI:ADDO proposal, next fall.



Page 14 of 15

Steps to Assess Community Consensus Needs

Following the initial training and exposure to the community, a website will be prepared as a statistics
gathering questionnaire to assess community needs. This will be in the nature of a manifesto explaining
the intent of the proposed CI:ADDO project build-out to follow, and eliciting comments from the
community expressing their needs as proposed users of the infrastructure. We will also invite them to
qualify themselves based on their education and research experience, more or less in the manner in
which publishers qualify their demographics when offering free trade publications. These qualifications
will be used to weight the sampled results. Major tradeoff questions regarding needs-priorities will be
posed, such as those of expert researchers vs. novice/trainees, “built-for” vs. “do-it-yourself”, permanent
products vs. ad-hoc exploration apparatus, development vs. research, etc.

This website will become a community outreach vehicle and will invite ideas expressing needs and
requirements for new domain-specific MetaScience appliances to be produced in the CI:ADDO project. It
will encourage the development of affinity groups to advocate and pursue new modeling appliances.

Inasmuch as the overall intent of this initiative is to shift the focus and focal point of computerization
from manual programming (converting equations to code) to the higher purpose of automated modeling
(converting science to solutions), it is hard to imagine that there is a limit to the useful lifetime of the
contemplated infrastructure.

As to the assessment of costs to create/enhance and operate the infrastructure, it is already known
that this is most affected by the respective roles of manpower vs. automation and the division of labor,
which are manifestly sociological issues. We have seen examples of 100 to 1 gains in productivity and
speed of development as the result of shifting from Waterfall to end-user development because the
Waterfall effectively subordinates the priority of highly diversified and volatile technology, engineering
modeling, to the priority of stable technology, numerical analysis, causing iterated labor in long feedback
loops to multiply the cost of changing models (i.e. evolution). It is this kind of analysis that will most
characterize estimation of costs in this project.

Expected CI:ADDO Enhancements

Inasmuch as we are seeking funding from private as well as public sources, the actual work we will
propose for the CI:ADDO proposal may have significantly shifted by next Fall. However certain planned
enhancements are envisioned at this juncture that will be likely included in the CI:ADDO proposal. These
enhancements fall into 3 general classes based on the organizations involved:

1. Vendor Proprietary Enhancements – Those enhancements to the closed source MC Kernel and
Library and product suite performed by vendor personnel;

2. Collaborative Enhancements – Those enhancements in which the vendor and MSF assume an
architectural overview and technical direction role, but which are largely performed by university
personnel, including staff, postdocs, faculty, graduate and undergraduate students using open-
source tools available in the marketplace and additional scaffolding tools provided by the MSF,
including the prototype tool families EverGlade and GAEMY, and Spiritext Generators.

3. University Research Enhancements – Those substantially new algorithms and models initiated
and developed by staff, faculty, and students of the universities involved with the infrastructure.

Vendor Enhancements

The primary vendor “supercomputer” enhancements consist primarily of internal parallelization of
existing library algorithms and external parallelization of optimization-job ensembles, known as
“MetaCalculus Optimization Broadcasting” (MOB) searching, discussed above. The current MC library
contains 15 constrained optimization solvers which will be internally modified for two levels of
parallelization and external job-assembly apparatus will be produced to aggregate MOB job collections to
run as a unit on a cluster supercomputer or distributed to independent cloud servers.



Page 15 of 15

Collaborative Enhancements

A major intent of the collaborative enhancements is to transfer vendor technology to the university
community to cause it spread via the cloud to all colleges, including those under-represented in STEM
development. It is meant to foster an automation-engineering agenda that can blossom and proliferate
throughout all engineering and computer-science schools. The purpose is to automate modeling by
advancing to higher-order media (languages and GUIs) which funnel through the MetaCalculus
computing nexus on supercomputers. The intent is unify modeling and programming so that is it done at a
much higher level interface at which science is converted to equations, rather than the current relatively
low-level computer-science interface in which equations are converted to code.

The technology to be transferred involves essentially four categories:

1. MetaFor 95 Translation – The cannibalization of the GNU G95 compiler to produce the MetaFor
language translator and spiritext publisher, intended to subsume and supersede conventional
Fortran;

2. Interactive Optimization Supercomputing Interfaces – Implementation of web and tablet desktop-
GUI interfaces for interactive optimization of MOB jobs on a Cluster supercomputer;

3. Extensibility Scaffolding – Implementation and workshop-utilization webinar development for the
use of ML/I, GAEMY, and EverGlade scaffolding for the production of advanced modeling
interfaces, including language extensions, new modeling languages, composer GUIs for MC
programs, and modeling GUIs like the MC[SD] GUI reviewed above;

4. GUI Production – Use of the Extensibility Scaffolding to produce previously designed composer
GUIs and Modeling GUIs, as pilot projects for instituting the proliferation of this discipline in the
various engineering schools in the U.S.

University Research Enhancements

The permanent or “steady-state” purpose of this technology transfer effort will be to provision the
continuing development of higher-order modeling appliances that can achieve rapid prototyping of new-
concept techniques and products in the short time-frames that students have to accomplish significant
research, and industry has to prove new concepts for commercial benefits. Historically this has depended
upon platforms which eased the vertical evolution of software from the complexity of the base hardware
logic progressively nearer to the highest levels of conceptualization by humans.

Use of Proceeds

The funding of this CI-P project will be entirely used to support the PI, Joseph Thames and senior
team members Mack Alford and Frank Germano, including travel, lodging, and office space at the UK in
Lexington, KY for the approximately seven months up to and including the submission of the CI:ADDO
proposal next fall. Since they are also the developers of the software ensemble to be installed on the UK
supercomputer, this is a synergistic use of their talents and skills.

Their availability at the UK will enable them to work with Professor McDonough and selected CCS
staff to perform the installations, prepare documentation, and conduct briefings as required to move the
agenda along and recruit participants in the initiative. The schedule of activities of these three, plus other
senior team members, Mickish and Scofield, will be determined in early planning meetings of this CI-P
project.



References

[1] PROSE – A General Purpose Higher Level Language, Procedure Manual, Control Data Corp. Pub No.
840003000 Rev. B (Jan 1977). [Available at www.metacalculus.com/prosemanuals.html]
[2] PROSE – A general Purpose Higher Level Language, Calculus Operations Manual, Control Data
Corp. Pub. No 840003200 Rev B (Jan. 1977). [Available at www.metacalculus.com/prosemanuals.html]
[3] PROSE – A general Purpose Higher Level Language, Calculus Applications Guide, Control Data
Corp. Pub No. 84000170 Rev. A (Jan 1977). [Available at www.metacalculus.com/prosemanuals.html]
[4] PROSE – A general Purpose Higher Level Language, Time Sharing System Guide, Control Data
Corp. Pub. No 84000160 Rev A (Jan. 1977). [Available at www.metacalculus.com/prosemanuals.html]
[5] J.M. Thames, Computing in calculus, Research/Development, (1975), pp. 24–30 [Available at
http://www.metacalculus.com/doc/PROSE/Computing_in_Calculus.pdf]
[6] F. W. Pfeiffer, Automatic differentiation in PROSE, ACM SIGNUM Newsletter, 22 (1987), pp. 1–8
http://www.metacalculus.com/doc/PROSE/AD_in_Prose.pdf
[7] J.M. Thames, The Evolution of Synthetic Calculus: A Mathematical Technology for
AdvancedArchitecture, in Proc. of the International Workshop on High-Level Language Computer
Architecture, University of Maryland, 1982 [Available at www.metacalculus.com/wisc.html]
[8] B. Krinsky and J. Thames, The Structure of Synthetic Calculus, A Programming Paradigm
ofMathematical Design, in Proc. of the International Workshop on High Level Computer Architecture,

University of Maryland, 1984 [Available at www.metacalculus.com/wisc.html]
[9] A.E. Speckhard, T.C. Wood, and J.M. Thames, The Aerospace Research Computer, a Status Report,
in Proc. of the International Workshop on High-Level Language Computer Architecture, University of
Maryland, 1982 [Available at www.metacalculus.com/wisc.html]
[10] Edsger W. Dijkstra (1982). "On the role of scientific thought". In Dijkstra, Edsger W..
Selected writings on Computing: A Personal Perspective. New York, NY, USA: Springer-Verlag
New York, Inc. pp. 60–66. ISBN 0-387-90652-5
[11] J.W. Forester, System Dynamics and Learner-Centered Learning in Kindergarten through 12

th
Grade

Education (http://sysdyn.clexchange.org/sdep/Roadmaps/RM1/D-4337.pdf )
[12] Debra Lyneis, “The Future of System Dynamics and Learner Centered Learning in K-12 Education,
Part II”, A Report from the Planning Meeting in Essex, MA, June 23-July 1, 2001,
http://www.clexchange.org/ftp/newsletter/CLEx12.2.pdf
[13] Debra Lyneis and Lees N. Stuntz, “System Dynamics in K-12 Education: Lessons Learned”, The
Creative Learning Exchange, 2007
http://www.systemdynamics.org/conferences/2007/proceed/papers/LYNEI390.pdf
[14] J.M. Thames, FORTRAN Calculus: A new Implementation of Synthetic Calculus, Digital Calculus
Corp., Torrance, CA (1989) [Available at www.metacalculus.com/fc77.html]
[15] Fortran Calculus User Manual, Digital Calculus Corporation (1990)
[Available at www.metacalculus.com/FCManChapters.html]
[16] J.M. Thames, Synthetic Calculus – A Paradigm of Mathematical Program Synthesis, in [17].
Preprint version: http://www.metacalculus.com/doc/FC/Synthetic_Calculus.pdf
[17] A. Griewank and G.F. Corliss, eds., Automatic Differentiation of Algorithms: Theory,
Implementations, and Applications, SIAM, Philadelphia (1991)
[18] R.E. Bellman and R.E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems,
American Elsevier Publishing Company, New York (1965).
[19] M.W. Alford, Mathematical Aspects of the Flight Analysis Computer Programs, AIAA Paper 68-583,
Fourth Propulsion Joint Specialist Conference, Cleveland, Ohio, June 10–14, 1968
[20] J.C. Hooper, Performance Analysis of the Ascent Propulsion Subsystem of the Apollo Spacecraft,
NASA Program Apollo Working Paper MSC-03408 [Available at www.metacalculus.com/apollo.html]
[21] M.W. Alford, A Computationally Stable Noise-in-the-State Filtering Algorithm, AIAA Paper 68-887,
presented at the AIAA Guidance, Control, and Flight Dynamics Conference, Pasadena, CA, August 12–
14, 1968
[22] David N. Perkins, Judah L. Schwartz, Mary Maxwell West, and Martha Stone Wiske, Editors,
Software Goes to School—Teaching for Understanding with New Technologies, Oxford University Press,
New York, 1995.
[23] David N. Perkins, David Crismond, Rebecca Simmons, and Chris Unger, “Inside Understanding”

http://www.metacalculus.com/doc/PROSE/Computing_in_Calculus.pdf
http://www.metacalculus.com/doc/PROSE/AD_in_Prose.pdf
http://www.metacalculus.com/wisc.html
http://sysdyn.clexchange.org/sdep/Roadmaps/RM1/D-4337.pdf
http://www.clexchange.org/ftp/newsletter/CLEx12.2.pdf
http://www.systemdynamics.org/conferences/2007/proceed/papers/LYNEI390.pdf
http://www.metacalculus.com/doc/FC/Synthetic_Calculus.pdf


Page 2 of 3

(Chapter 5 in [22]).
[24] Judah L. Schwartz, “Shuttling Between the Particular and the General: Reflections on the Role of
Conjecture and Hypothesis in the Generation of Knowledge in Science and Mathematics” (Chapter 6 in
[22]).
[25] Judah L. Schwartz, “The Right Size Byte: Reflections of an Educational Software Designer” (Chapter
10 in [22]).
[26] Arthur Koestler (1968). The Ghost in the Machine. McMillan: New York.
[27] Herbert Simon (1968). The Sciences of the Artificial. MIT Press: Boston.
[28] Ken Wilber (2000), A Brief History of Everything, Revised Edition, Shambala, Boston
[29] E. Paul Goldenberg, “Multiple Representations: A Vehicle for Understanding Understanding”
(Chapter 9 in [22])
[30] Stephen H. Schwartz and David N. Perkins, “Teaching the Metacurriculum: A New Approach to
Enhancing Subject-Matter Learning” (Chapter 14 in [22]).
[31] Joseph M. Thames and Stephen W. Duckett, “Computer-Based User Interface for A Memory-
Resident Rapid Comprehension Document for Original Source Information”, United States Patent
Application Publication US 2004/0189713 A1, Sep 30, 2004.
http://www.freepatentsonline.com/20040189713.pdf
[32] Emile Durkheim, The Division of Labor in Society, 1893, The MacMillan Co., 1933, Free Press
edition,, 1964, p. 183.
[33] Judah L. Schwartz, “Can Technology Help Us Make the Mathematics Curriculum Intellectually
Stimulating and Socially Responsible?”, International Journal of Computers for Mathematical Learning 4:
99-119, 1999, Kluwer Academic Publishers.
[34] J. McDonough and D. Park, A Discrete Maximum Principle Solution to an Optimal Control
Formulation of Timberland Management Problems, Presented at Western Forest Economics Conference,
Wemme, OR, May 1975. [Available at www.metacalculus.com/epoc.html]
[35] J. McDonough and D. Park, Nonlinear Optimal Control Approach to Interregional Management of
Timber Production and Distribution, Proceedings, Systems Analysis Workshop, Society of American
Foresters, University of Georgia, 1975
[36] Thomas Kuhn, The Structure of Scientific Revolutions, University of Chicago Press, 1962,
[37] George Corliss, et al, editors, Automatic Differentiation of Algorithms—From Simulation to
Optimization, Selected papers from the Third International Conference on Automatic (Algorithmic)
Differentiation, Cote d’Azur, France, (June 2000), Springer, 2002.
[38] ISEE Systems, “STELLA—Systems Thinking for Education and Research”,
http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx
[39] Ventana Systems, Inc. “Vensim Software—Linking systems thinking to powerful dynamic models”,
http://www.vensim.com/software.html
[40] Powersim Software, “Powersim Studio 8 Products” ,
http://www.powersim.com/main/products___services/powersim_products/
[41] Jim Hines, “Modeling with Molecules 2.02”, Ventana Systems, Inc. 2005,
http://www.vensim.com/molecule.html
[42] J.M. Thames and W.M. Chunn, “An Evolving Expert System for Shuttle Experiments Flight Planning”,
Paper presented at USAF Space Division Industry Symposium, Vandenberg, AFB, 1985.
http://www.metacalculus.com/doc/FDS/Evolving_FDS_Expert_System.pdf
[43] J M. Thames, “Flight Analysis of the Apollo Propulsion Systems”, NASA Program Apollo Working
Paper No. 1196, NASA Manned Spacecraft Center, March 8, 1966 [Available at
http://www.metacalculus.com/doc/Apollo/Flight_Analysis_of_the_Apollo_Propulsion_Systems.pdf]
[44] R.K.M. Seto, “Apollo 9 Mission Report: Descent Propulsion System Final Flight Evaluation”,
MSC-PA-R-69-2, Supplement 8, NASA Manned Spacecraft Center, August 1970 [Available at
http://www.metacalculus.com/doc/Apollo/Apollo_9_Descent_Propulsion_System_Flight_Analysis.pdf]
[45] R.K.M. Seto, “Apollo 10 Mission Report: Descent Propulsion System Final Flight Evaluation”,
MSC-00126, Supplement 7, NASA Manned Spacecraft Center, December 1969 [Available at
http://www.metacalculus.com/doc/Apollo/Apollo_10_Descent_Propulsion_System_Flight_Analysis.pdf]
[46] R.J. Smith and W.G. Griffin, “Apollo 12 Mission Report: Service Propulsion System Final Flight

http://www.freepatentsonline.com/20040189713.pdf
http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx
http://www.vensim.com/software.html
http://www.powersim.com/main/products___services/powersim_products/
http://www.vensim.com/molecule.html
http://www.metacalculus.com/doc/FDS/Evolving_FDS_Expert_System.pdf
http://www.metacalculus.com/doc/Apollo/Flight_Analysis_of_the_Apollo_Propulsion_Systems.pdf
http://www.metacalculus.com/doc/Apollo/Apollo_9_Descent_Propulsion_System_Flight_Analysis.pdf
http://www.metacalculus.com/doc/Apollo/Apollo_10_Descent_Propulsion_System_Flight_Analysis.pdf


Page 3 of 3

Evaluation”, MSC-O1855, Supplement 3, NASA Manned Spacecraft Center, December 1971 [Available at
http://www.metacalculus.com/doc/Apollo/Apollo_12_SPS_Flight_Evaluation.pdf]
[47] A.T.Avvenire and S.C. Wood, “Apollo 15 Mission Report: Descent Propulsion System Final Flight
Evalutation”, MSC-05161, Supplement 4, NASA Manned Spacecraft Center, September 1972 [Available
at http://www.metacalculus.com/doc/Apollo/Apollo_15_DPS_Flight_Evaluation.pdf]
[48] M. Campbell-Kelly and D.D. Garcia-Swartz, “Economic Perspectives on the History of the Computer
Time-Sharing Industry, 1965-1985, IEEE Annals of the History of Computing 1058-6180/08. January-
March, 2008.
[49] J.M.Thames, “SLANG—A Problem-Solving Language of Continuous Model Simulation and
Optimization", ACM National Conference, San Francisco, 1969. [Available at
http://www.metacalculus.com/doc/SLANG.pdf]
[50] J.D. McCully, “The Q Approach to Problem Solving”, Proceedings of the Fall Joint Computer
Conference, 1969.
[51] P. J. Brown, “The ML/I Macro Processor”, Communications of the ACM (October 1967). [Current
Website: http://www.ml1.org.uk/]

[52] J.M. Thames, “Metacybernetics – Design Evolution of Metacomputer Host Architecture”, The
AeroSpace Corporation, 1983, [Available at http://www.metacalculus.com/doc/WISC/Metacybernetics.pdf]

[53] J.M. Thames, “GAEMY – Grammar-Action Evolution Manager for Yacc” [Available at
http://www.metacalculus.com/Metacybernetics/GAEMY.html]

[54] J.M. Thames, “EverGlade – Glade GUI Evolution Manager” [Available at
http://www.metacalculus.com/Metacybernetics/EG.html]

[55] J. Abadie and J. Carpentier, “Generalization of the Wolfe Reduced Gradient Method to the case of
Nonlinear Constraints,” in Optimization, R. Fletcher (Ed), 1969.

[56] Electric Cloud, “Five Reasons why Agile Won’t Scale Without Automation”,

[57] Ko, A., Abraham, R., Beckwith, L., Blackwell, B., Burnett, B., Erwig, M., Scaffidi, C., Lawrence, J.,
Lieberman, H., Myers, B., Rosson, M., Rothermel, G., Shaw, M., and Wiedenbeck, S. 2011, “The State of
the Art in End-User Software Engineering”. ACM Computing Surveys.

[58] Geany IDE [http://en.wikipedia.org/wiki/Geany]

[59] R.N. Nilsen and W.J. Karplus, Continuous System Simulation Languages: A State of the Art Survey,
Annales de l’ Association Internationale pour le Calcul analogique, Paris, January 1974 [Available at
http://www.metacalculus.com/doc/PROSE/Continuous_System_Simulation_Languages.pdf]

[60] L.L. Zia, Applied Mathematics and Computation, 30, 19-47 (1989);

[61] D.F. Scofield, Constrained Optimization Approach to the Problem of Fitting 2D Diffusion Models to
Empirical Data Sets, (private communication), Available at
http://www.metacalculus.com/doc/PDE_Solvers/Scofield-2.pdf]

[62] J.M. McDonough, Parameter Estimation for a Convective-Diffusive PDE using MetaFor (private
communication) Available at [http://www.metacalculus.com/doc/PDE_Solvers/McDonough-1.pdf]

[63] S.C. Johnson, Yacc—Yet Another Compiler Compiler, [http://dinosaur.compilertools.net/yacc/]

[64] The Glade Interface Designer [http://glade.gnome.org/]

[65] The Gtk+ Project [http://www.gtk.org/]

[66] GNU Bison [http://en.wikipedia.org/wiki/GNU_bison]

[67] Meld Diff & Merge Tool [http://meld.sourceforge.net/]

[68] Linus Torvalds, Git—the Fast Version Control System [http://git-scm.com/]

http://www.metacalculus.com/doc/Apollo/Apollo_12_SPS_Flight_Evaluation.pdf
http://www.metacalculus.com/doc/Apollo/Apollo_15_DPS_Flight_Evaluation.pdf
http://www.metacalculus.com/doc/SLANG.pdf
http://www.ml1.org.uk/
http://www.metacalculus.com/Metacybernetics/GAEMY.html
http://www.metacalculus.com/Metacybernetics/EG.html
http://en.wikipedia.org/wiki/Geany
http://www.metacalculus.com/doc/PROSE/Continuous_System_Simulation_Languages.pdf
http://www.metacalculus.com/doc/PDE_Solvers/Scofield-2.pdf
http://www.metacalculus.com/doc/PDE_Solvers/McDonough-1.pdf
http://dinosaur.compilertools.net/yacc/
http://glade.gnome.org/
http://www.gtk.org/
http://en.wikipedia.org/wiki/GNU_bison
http://meld.sourceforge.net/
http://git-scm.com/

